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Abstract
The successful design of an acid fracture job requires accurate prediction of fractured well productivity.
Productivity estimation demands knowledge of both the acid penetration length and conductivity
distribution for the given reservoir. The literature includes several models developed to predict the
conductivity of acid fractured rock. The most popular is empirical and based on measuring the conductivity
of 25 acid fracture experiments. The present research provides empirical models utilizing machine learning
techniques and incorporating 97 experiments and 563 datapoints.

We conducted an extensive literature review to collect the published data on acid fracture experiments.
The objective of such experiments is to measure conductivity at different formation closure stresses while
considering field conditions. We used several data preprocessing techniques to clean the data, fill in missing
values, exclude outliers and failed experiments, and standardize the dataset. Regularization was employed
to eliminate features that didn't contribute to accurate prediction. Feature engineering was used to construct
new features from our dataset. We began by measuring the correlations between features to better understand
the data. We then built various machine learning models to predict acid fracture conductivity.

It has been observed that developing one universal empirical correlation often results in significant
errors in conductivity estimation because different rock types result in different etching patterns that cannot
be explained by a single correlation. For instance, the channeling etching pattern is mostly observed
in limestone formations, while a roughness pattern is seen in dolomite and chalk rock. Moreover, the
conductivities of etching patterns formed in chalk, dolomite, and limestone formations behave differently.
We built machine learning classification techniques to determine the most likely etching patterns (e.g.,
channeling, roughness). A linear regression-based model was then developed as a baseline for comparison
with other models generated through ridge regression. We evaluated the performances of our models using
well-known metrics such as accuracy, precision, recall, mean squared error, and correlation coefficients. We
also employed cross-validation to avoid over-fitting, finding that certain features were the most important
in predicting acid fracture conductivity.
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Detailed empirical conductivity correlations and models were developed in this work for three carbonate
rock types. Previously, a single empirical model has often been employed to estimate acid fracture
conductivity or, at best, a model has been developed for a particular rock type. Most models have not
considered the impact of etching patterns on conductivity, which was found to be significant in limestone.

Introduction
Acid fracturing is a well stimulation method applied to tight carbonate reservoirs. A hydraulic fracture is
created when the treatment pressure exceeds the formation breakdown pressure. The formation stresses
usually close the hydraulic fracture once pumping ceases. Prior to this cessation, fracture face asperities prop
the fracture open against closure stress, providing a conductive path for reservoir fluids. Rock heterogeneity
results in uneven surfaces, improving fracture conductivity (Williams et al., 1979; Asadollahpour et al.,
2018). Conductivity is defined as the ability of a fracture to deliver fluids; it decreases as the formation
closure stress increases. A successful acid fracture job produces sufficient durable conductivity.

Predicting acid fracture conductivity is essential to improving acid fracture design. Acid/rock dissolution
is a stochastic phenomenon that depends on a number of parameters. Thus, prediction of the resulting
conductivity can be challenging. Different approaches have been taken to predict acid fracture conductivity,
as summarized in Table 1. Empirical correlations based on experimental studies are convenient to apply
because their parameters are easy to obtain. Analytical correlations based on theoretical derivations are
complicated and require sophisticated parameters. These parameters may demand experiments to tune them
for a regression analysis. Artificial intelligence models require accurate, consistent, and sizeable datasets
to be viable.

Table 1—Conductivity Correlations

Analytical Numerical Empirical Artificial Intelligence

Gangi, 1978 Deng-Mou et al., 2010 Nierode-Kruck, 1973 Akbari et al., 2017

Walsh, 1981 Kamali et al., 2015 Nasr-Eldin et al., 2006 Eliebid et al., 2018

Gong, 1997 Pournik, 2009 Motamedi-Ghahfarokhi et al., 2018

Nierode and Kruck (1973) suggested that among other parameters, the amount of rock dissolved can be
used to determine acid fracture conductivity. Recent research has also shown that the pattern of rock removal
has a crucial effect on hydraulic fracture conductivity, even more so than the amount of dissolved rock
(Pournik, 2008). For instance, conductivity is higher when the acid fracture treatment generates channels
instead of rough surfaces, given that such channels withstand closure stress (van Domelen et al., 1994; Ruffet
et al., 1998; Beg et al., 1998; Nieto et al., 2006; Melendez, 2007; Antelo, 2009; Cash, 2016; Kamali et al.,
2016; Lu et al., 2017). The leak-off of acid into the formation matrix can also result in more heterogeneous
fracture surfaces that boost conductivity when the rock's mechanical properties are unharmed (Beg et al.,
1998).

Pournik (2008) categorized etching patterns of rock samples after acidization into five categories. The
roughness etching pattern occurs when acid etches the rock, leaving asperities distributed on the fracture
surface. The channeling etching pattern is characterized by a V-shape where the acid etches the middle
more than the edges. Cavity and turbulence etching patterns are similar in that pockets are formed by the
acid etching. The uniform etching pattern occurs due to low reactivity of the rock with the acid or rock
mineral homogeneity. In similar acid systems, contact time can influence the etching pattern. Also, acid
concentration, which changes along the fracture length, affects the amount of rock dissolved as well as
the etching pattern (Pournik et al., 2013). Roughness is more likely to be generated when smooth surfaces
are being acidized, while acidization of rough surfaces deepens valleys and smoothens peaks (Al-Momin
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et al., 2014). Pournik (2008) employed both theoretical and empirical methods to develop conductivity
correlations for the roughness etching pattern, considering each rock type separately.

Few models account for the contribution of channels to conductivity, which provide higher conductivity
at low stress and durable conductivity after fracture closure. Large channel dimensions make the flow
easier and pressure drop lower. Deng and Mou (2012) captured their effect through numerical studies,
enhancing conductivity prediction. They classified etching patterns into three categories: permeability
distribution dominant, mineralogy distribution dominant, and competing effect of permeability and
mineralogy distributions. To apply their correlations, six parameters are needed: ideal fracture width, ideal
Young's modulus, calcite fraction, horizontal and vertical correlation lengths, and standard deviation for
permeability distribution. Almomen (2013) showed that rough surface fractures generate conductivity an
order of magnitude higher than do smooth surface fractures at low closure stresses. Thus, ignoring such
factors will yield simple models, but such models will be inaccurate and biased. We investigated the effects
of different features such as etching patterns on conductivity prediction.

Data Gathering and Handling
An extensive literature review was conducted to collect published data on acid fracture experiments (Hill et
al., 2007; Melendez, 2007; Pournik, 2009; Almomen, 2013; Nino, 2013; Cash, 2016; Jin et al., 2019). The
physical properties, meanings, and units of different features are described in Table 2.

Table 2—Physical Meaning of Features

Feature Symbol Physical Meaning and Unit

Rock Type X1 Rocks etched by different acids

Acid Type X2 Acid systems used to etch rocks

Rock Surface X3 Initial rock surface before acid etching

Etching Pattern X4 Manner of rock surface behavior after acid etching

Temperature X5 Temperature of etching acid in °F

Injection Rate X6 Rate of pumping acid through API conductivity cell in liters per minute

Injection Time X7 Time for pumping acid through API conductivity cell in minutes

Acid Concentration X8 Concentration of etching acid pumped through API conductivity cell as a percentage

Stress X9 Applied stress by loading frame in psi

Conductivity Y Resultant rock conductivity under stress in md-ft

The objective of the acid fracture experiment was to measure conductivity at different formation closure
stresses while mimicking field conditions (e.g., rock type, acid type, injection rate, treatment volume).
The conditions were scaled down to represent the field conditions. The rock types and their initial surface
conditions were tabulated, along with the treatment conditions (e.g., temperature, injection time). Next, the
etching pattern and conductivity at each load stress were compiled to complete the dataset, as shown in
Table 3 (Desouky, 2019). Therefore, the data gathered were consistent because the datapoints came from
the same modified API RP-61 conductivity cell (Zou, 2006).

Table 3—Sample of Data Collected

X1 X2 X3 X4 X5 X6 X7 X8 X9 Y

Chalk GelledAcid Rough Channeling 175 1 30 15 3000 90

Chalk Straight Smooth Turbulence 175 1 5 15 100 2778
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X1 X2 X3 X4 X5 X6 X7 X8 X9 Y

Dolomite GelledAcid Smooth Rough 130 0.5 20 15 500 127

Dolomite GelledAcid Smooth Rough 130 0.5 20 15 1000 104

Limestone GelledAcid Rough Rough 175 1 30 15 5000 72

Limestone Emulsified Smooth Rough 200 1 15 15 1000 1597

Outliers and failed experiments were excluded to obtain the data most appropriate for building the model.
Table 4 includes a statistical summary of the different numerical features.

Table 4—Statistical Summary of Numerical Features

X5 X6 X7 X8 X9 Y

Mean 162.7 1.0 19.0 16.0 2,764.1 2,534.7

Median 175.0 1.0 15.0 15.0 3,000.0 366.0

Mode 175.0 1.0 10.0 15.0 1,000.0 72.0

Standard
Deviation 36.2 0.1 12.9 3.0 1768.8 7,048.3

Variance 1,309.0 0.0 165.7 8.9 3,128,639.2 49,678,784.6

Range 175.0 0.5 55.0 13.0 7,500.0 72,483.0

Minimum 100.0 0.5 5.0 15.0 0.0 0.0

Maximum 275.0 1.0 60.0 28.0 7,500.0 72,483.0

There were different types of predictors and features among the gathered data, both categorical and
numerical. The ranges of numerical features differed. For instance, temperature ranged from 100°F to 275°F,
and stress from 0 to 7,500 psi. The stress range was roughly 43 times greater than the temperature range.
Thus, these two features were very different. When further analyses were conducted (e.g., multivariate linear
regression), the attributed stress intrinsically influenced the result to a greater extent, due to its larger value.
However, this did not necessarily mean it was more important as a predictor. The predictors considered
were {X1, X2, … …, Xn}, where the superscript j is an index ranging from 1 to the total number of predictors
n. Each predictor X contained m datapoints, , where the subscript i is an index ranging from 1 to the
total number of points m. The goal of normalization was to alter these features in the dataset to reside
on a common scale without changing the difference in the value range. Therefore, prior to modelling, the
normalization of the numerical features was accomplished by subtracting their means and scaling them to
unit variance, as per Equation (1):

(1)

where  is the z-score or normalized value of each data point, μj is the mean value of each predictor X, and
σj is the standard deviation of the predictor.

Method
There were two goals for this research (see Figure 1). The first was to classify the etching patterns based
on rock type and treatment condition. A multi-class algorithm was needed to label the different classes,
depending on various conditions. The second goal was predicting the conductivity of the different rock
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types, using the most relevant features. Multi-variant regression was a simple and robust approach to
obtaining a predictive model.

Figure 1—Models Targeted and Data Used

Classification of Etching Patterns
Ensemble templates can be employed to train multiclass error-correcting output codes models. The template
employed here had three arguments: method, number of learners, and learner. We specified in the following
way. The method was "GentleBoost," the number of learners was 100, and the learner was a decision tree. As
a classifier, the decision tree splits data based on various conditions. Multi-classification is similar to binary
classification, but with a minor modification. One class is regarded as positive and the rest are negative.
Ensemble learning is an aggregation of multiple options that decreases the possibility of choosing a poor
model.

Regression for conductivity prediction
The essence of regression as used in the present research is to reduce the cost function  through gradient
descent. The cost function is a measure of how wrong the model is when estimating the responses from

predictors. A gradient descent minimizes the cost function by finding the weights, θj, that make 

equal to zero. The hypothesis hθ differentiates between linear and non-linear regressions. Directly using the
feature values means a linear hypothesis, whereas introducing a logarithm or power to the feature values
makes the hypothesis non-linear. The hypothesis function is sensitive to slight changes in the coefficients.
The coefficients' values change by a significant amount as the training data change. Thus, regularized linear
regression was appropriate for this problem. Regularization is used to drop features that do not contribute to
a good prediction. The regularization term has different forms and the regression is named based on whether
it is ridge, lasso, or elastic net. Fitting a linear regression model to data can result in coefficients with large
variances. Regularization reduces the variance of the coefficients, yielding models with smaller prediction
errors. Here, ridge regression was used, and the cost function is defined as in Equation (2):

(2)

where  is the cost function, m is the number of datapoints, y(i) is the actual response at the datapoint
i, λ is the regularization parameter, n the number of predictors, θj is the weight multiplied by the feature j,
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and hθ(x(i) is the hypothesis. The hypothesis consisted of a combination of Xs multiplied by θs, depending
on the design matrix.

Results and Discussion

Classification of Etching Patterns
Rock surface, acid type, and rock type were used as predictors for 80% of the data (78 experiments) in order
to train the model with five-fold cross-validation. The last 20% of the data (19 experiments) was used to
test the classifier. The classifier had a test error of .0833. The overall accuracy was 94.7%. All precision
and recall values are summarized in Figure 2. The corner square to the right of the figure shows the overall
accuracy of the classifier. The rows are relevant to the predicted class, while columns are to the actual class.
The diagonal squares indicate the observations that were correctly classified. The off-diagonal squares are
incorrectly classified observations. The number of observations and their percentages are shown in each
square. The rightmost column includes the percentages of all observations predicted to belong to each class
that were correctly or incorrectly classified. This metric is called precision. The bottom row includes the
percentages of all observations belonging to each class that were correctly or incorrectly classified. This
metric is called the true positive rate (i.e., recall).

Figure 2—Confusion matrix of the etching pattern classifier.

Precision and recall become more important when the data are skewed or unbalanced. For instance,
the dolomite generated a roughness etching pattern in 90.6% of the experiments. There was an unbalance
in the etching pattern generated. If an etching pattern classifier for dolomite only was set to always
output roughness, the overall accuracy would be higher than 90%. Any other etching pattern would be
misclassified. Thus, assessment of a classifier based on overall accuracy alone when there is a severe class
imbalance is inaccurate.
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Regression for conductivity prediction

Dolomite.   Data often contain predictors that do not have any relationship with the response. These
predictors should not be included in the model. It is better to have a limited number of predictors, yet hold
nearly complete variance of the data (Kazakov et al., 2011). One way to select the most relevant predictors
for response is to repeatedly train the model while adding predictors and monitoring loss. At a specific point,
adding more predictors will not increase the accuracy, only calculation time and memory consumption.

The acid type, rock surface, and etching pattern were transformed into dummy variables to make the
entire dataset homogeneous as numeric values. For instance, a categorical predictor that contained a number
of categories equal to K was transformed into K-1 predictors of zeros and ones.

Figure 3 shows the minimum number of predictors sufficient to obtain the least loss in the multivariate
linear model for predicting the conductivity of dolomite. Adding the temperature and etching pattern
significantly decreased loss. The loss then remained the same after adding rock surface and acid type.

Figure 3—Lowest number of predictors to obtain the least loss for dolomite.

The predictors that resulted in the least loss in Figure 3 were used to obtain the first dolomite model. The
predictors beginning with "Stress" and ending with "RockSurface=Roughness" were selected. The design
matrix was built using the MATLAB software function "x2fx." One of the following four models needed
to be specified first: "linear," "interactions," "quadratic," or "purequadratic." The ten-predictor matrix was
converted to a design matrix using the "quadratic" model. The learning curve in Figure 4 shows high variance
that cannot be addressed by regularization or simplification of the model. This means that more data were
needed. The correlation coefficient between the fitted and actual values was 94.9%, and the normalized
MSE was 0.03. This model contained 52 parameters and could not have been easily implemented. Thus,
other models were trained with different combinations of predictors to obtain a simpler model with fair
performance. A simpler model was obtained using the first four predictors, starting with "Stress" and ending
with "InjectionRate." The bias and weights are summarized in Table 5.
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Figure 4—Learning curve for dolomite.

Table 5—Detailed Conductivity Model for Dolomite

Parameter Value

Bias 0.7969

X6 0.1103

X7 0.5616

X8 -0.0107

X9 -0.2002

X6*X7 0.3348

X6*X8 -0.0325

X6*X9 -0.0738

X7*X8 -0.1305

X7*X9 -0.0548

X8*X9 0.0145

(X6)^2 -0.1686

(X7)^2 -0.6016

(X8)^2 -0.0402

(X9)^2 0.0309

The values predicted for dolomite conductivity were plotted against the actual ones, as shown in Figure
5. The fitted values at high stresses were less than the actual values, which was as expected.
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Figure 5—Actual vs. predicted values of dolomite.

The correlation coefficient between the fitted and actual values was 93.1%, and the normalized MSE was
0.05. The error distribution was slightly asymmetric, as shown in Figure 6.

Figure 6—Error distribution of the dolomite conductivity predictions.

Chalk.   Figure 7 shows the minimum number of predictors sufficient to obtain the lowest loss in
the multivariate linear model for predicting the conductivity of chalk. Thus, "Stress," "InlectionTime,"
"Temperature," and "EtchingPattern=Turbulence" were selected as predictors. The chalk conductivity model
was created by training a polynomial regression model of the four predictors selected, their quadratic values,
and their interactions with one another.
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Figure 7—Lowest number of predictors yielding the least loss for chalk.

The learning curve in Figure 8 shows a good fit, as the two curves plateau at a low error value. The
regularization parameter selected was 0.001 because the cross-validation error was at a minimum at this
value.

Figure 8—Learning curve for chalk.

The values predicted for chalk conductivity were then plotted against the actual ones (see Figure 9).
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Figure 9—Actual vs Predicted on 45-Degree line of Chalk

The correlation coefficient between the fitted and actual values was 90.6%. The error distribution for
chalk conductivity indicates nearly symmetric behavior, as seen in Figure 10. Most of the errors were
between [-1, 0] and [0, 1], with almost the same frequency.

Figure 10—Error distribution of chalk.

For dolomite and chalk, it was possible to train simpler models with fewer predictors. This was because
they often developed a roughness etching pattern (see Table 6). A simpler model for chalk conductivity with
the same performance as the previous model appears in Table 7.

Table 6—Correlations between Etching Pattern and Rock Type

Channeling Rough Turbulence Uniform Total

5 125 8 0 138
Dolomite

3.6% 90.6% 5.8% 0% 100%

6 100 11 0 117
Chalk

5.1% 85.5% 9.4% 0% 100%

85 142 33 30 290
Limestone

29.3% 49% 11.4% 10.3% 100%
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Table 7—Detailed Conductivity Model for Chalk

Parameter Value

Bias 0.3769

X5 -0.1179

X7 0.2851

X9 -0.3391

X5*X7 -0.0672

X5*X9 -0.0867

X7*X9 0.0232

X5^2 -0.5476

X7^2 -0.0567

X9^2 0.1459

Limestone.   Predicting limestone conductivity can be problematic because the material generates all kinds
of etching patterns. Thus, to develop a reasonable conductivity model, high conductivity values were
expected first. A classifier was developed using ensemble classification based on the treatment and original
surface conditions. The classifier's accuracy was 93% (see Figure 11). The output of this classifier was then
fed into the polynomial regression model as an additional predictor.

Figure 11—Confusion matrix of normal and high limestone conductivities.

The high conductivity values were labelled "Conductivity=High" and the normal values were labelled
"Conductivity=Normal." The confusion matrix misclassified four high conductivity datapoints in the test
dataset. Error analysis was performed to investigate why this misclassification occurred. The channels
could be considered open slots, the conductivity of which depended on the width of the channel. Some
channels were more conductive than others because they were wider. The V-shaped angle of the channel
itself impacted its sustainability under stress. For instance, if the angle of the V-shape was acute, it collapsed
at higher stresses than would an obtusely angled channel.

Figure 12 shows the minimum number of predictors sufficient to obtain the lowest loss in the multivariate
linear model predicting the conductivity of limestone. Thus, the predictor "Stress" was selected for the
beginning and "AcidType=Straight" for the end. The loss curve began to increase as the number of predictors
grew, due to overfitting of the data by training.
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Figure 12—Lowest number of predictors to obtain the least loss for limestone.

Several limestone conductivity models were created by training a polynomial regression model with
different combinations of predictors. The simplest is tabulated in Table 8. The learning curve in Figure 13
shows a slightly high variance as the training curve plateaus, whereas the test error had a higher value. The
regularization parameter was selected to be 0.003 because the cross-validation error was at a minimum at
this value.

Table 8—Detailed Conductivity Model for Limestone

Parameter Value

Bias 0.2374

Conductivity=Normal -0.5451

X5 0.4974

X9 -0.8598

Conductivity=Normal*X5 -0.4680

Conductivity=Normal* X9 0.7245

X5*X9 -0.1317

AcidType=Viscoelastic -0.0700

AcidType=Straight 0.1103

(X9)^2 -0.0008
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Figure 13—Learning curve for limestone.

The values predicted for chalk conductivity were then plotted against the actual ones (see Figure 14).

Figure 14—Actual vs. predicted values for limestone.

The correlation coefficient between the fitted and actual values was 91.9%. The error distribution of
limestone conductivity was asymmetrical, as there were high conductivity points that could not be forecast
by the model (see Figure 15). These extremely high conductivity values were not expected by the classifier
or the conductivity model. The values were two to three orders of magnitude higher than the normal values.
The overall error was amplified to 0.686, due to the presence of these points.



SPE-200527-MS 15

Figure 15—Error distribution of limestone.

Conclusion
The etching pattern that results from acid fracturing has a more significant impact on limestone acid fracture
conductivity than on that of chalk and dolomite. Dolomite and chalk both developed a roughness etching
pattern in more than 85% and 90% of the acid etching experiments, respectively. Limestone developed a
roughness etching pattern in less than 50% and a channeling etching pattern in 30% of the acid etching
experiments. Limestone's extremely high conductivity channels could not be fitted by the model and
increased errors. Most errors in acid fracture conductivity estimation happen at low stresses when the
fracture behaves like an open slot, or at high stresses when the rock fails unexpectedly under closure stress.
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