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ABSTRACT: Acid-fracturing operations are mainly applied in
tight carbonate formations to create a highly conductive path.
Estimating the conductivity of a hydraulic fracture is essential for
predicting the fractured well productivity. Several models were
developed previously to estimate the conductivity of acid-fractured
rocks. In this research, machine learning methods were applied to
560 acid fracture experimental datapoints to develop several
conductivity correlations that honor the rock types and etching
patterns. Developing one universal correlation often results in
significant error. To develop conductivity correlations, various data
preprocessing methods were applied to remove the outliers and
failed experiments. Features that did not contribute to precise
predictions were removed through regularization. A machine
learning classifier was built to predict the etching pattern based on the input data. We generated a multivariate linear regression
model and compared it with other models generated through ridge regression. In addition to that, artificial neural network-based
model was proposed to predict the fracture conductivity of several carbonate rocks such as dolomite, chalk, and limestone. The
performance of the developed models was assessed using well-known metrics such as precision, accuracy, mean squared error, recall,
and correlation coefficients. Cross-validation was also employed to assure accuracy and avoid overfitting. The classifier accuracy was
93%, while the regression model resulted in a relatively high correlation coefficient.

1. INTRODUCTION

Acid fracturing is a well productivity enhancement method
performed on tight carbonate reservoirs. A hydraulic fracture is
extended in the formation when the breakdown pressure is
exceeded during the treatment. The formation minimum
horizontal stress acts to close the hydraulic fracture once the
pumping ceases. Fracture face asperities keep the fracture open
against closure stresses which allows the fracture to conduct
the reservoir fluids. Formation heterogeneity results in uneven
dissolved fracture surfaces which improve the conductivity of
the fracture.1,2 Conductivity is described as the capability of a
fracture to deliver reservoir fluids to the wellbore; however, it
decreases as the formation closure stress increases. A successful
acid fracture job should result in sustained long-term
conductivity.
Estimating acid fracture conductivity is important for

improving an acid fracture design. Acid/rock reaction in a
formation is a stochastic phenomenon that depends on many
parameters. Thus, prediction of the resulting conductivity can
be challenging. Different methods have been applied to predict
acid fracture conductivity, which are summarized in Table 1.
Empirical correlations based on experimental studies are most

suitable as their parameters are easy to attain. Usually,
theoretical derivations of an analytical model result in a
complicated formula which requires many input parameters.
Also, these parameters usually require tuning with exper-
imental outcomes using regression analysis. On the other hand,
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artificial intelligence (AI) models require sizable, consistent,
and accurate datasets in order to be feasible.
Nierode and Kruk5 proposed that among other parameters,

the amount of rock dissolved should be used to estimate acid
fracture conductivity. A recent study has also shown that acid-
fracture fluid type could alter the pattern of rock removal
which has a significant effect on the conductivity, even more so
than the volume of the dissolved rock.14 For example,
conductivity is higher when the acid fracture treatment creates
channels rather than rough surfaces, given that they could
withstand closure stress.15−23 The leaking of acid from the
fracture into the surrounding rock matrix can also result in
more heterogeneous fracture surfaces that enhance conductiv-
ity if the rock’s mechanical properties are unharmed.17

Pournik24 classified etching patterns of fractured rock
samples after acid fracturing into five categories. The
roughness etching pattern occurs when acid dissolves the
rock randomly, leaving asperities spread on the fracture
surface. The channeling etching pattern is defined by a V-
shape where acid creates a defined path from the core inlet to
the outlet. Cavity and turbulence dissolution patterns are
similar in that pockets of dissolved spots are created by the
acid reaction. The uniform etching pattern happens because of
rock homogeneity or uniform or well-balanced reactivity with
acid. Contact time, in a similar manner, can influence the
etching pattern. Also, acid with different concentration
magnitudes could affect the etching pattern and the amount
of rock dissolved.25,26 Roughness is more likely to be created
when even surfaces are being acidized, while acidization of
uneven surfaces deepens valleys and smoothens peaks.27

Kamali and Pournik22 employed both theoretical and empirical
methods to develop conductivity correlations for the roughness
etching pattern, considering each rock type separately.
Few models accounted for the contribution of channels to

conductivity, which provide a higher conductivity at a low
stress and a long-term conductivity after fracture closure. Large
channel dimensions make the fracture more conductive to
fluids. Deng et al.4 captured their effect through numerical
simulations, enhancing conductivity estimation. They catego-
rized etching patterns into three classes: permeability
distribution dominant, mineralogy distribution dominant, and
competing effect of permeability and mineralogy distributions.
To apply the developed correlations, six parameters are needed
which could be hard to obtain or extract from field data.
Almomen28 showed that acidizing rough fracture surfaces
create a higher conductivity as compared to smooth ones at
low closure stresses. Thus, ignoring such important parameters
will yield simple models but could be inaccurate and biased.
In this work, machine learning algorithms were applied to

estimate acid fracture conductivity based on the data collected
from the large size standard API RP-61 conductivity cell (7 in.
× 3 in. × 1.7 in.). Artificial neural network (ANN) and
multivariate linear regression (MLR) models were utilized to
develop empirical models to predict fracture conductivity in
three different rock types, namely, limestone, chalk, and
dolomite. Previous models were developed based on fewer
data points and small size core samples. Also, we investigated
the impact of treatment conditions and etching patterns on the
generated conductivity, while it was previously ignored. Earlier
work in the literature assumes that a larger conductivity can be
obtained from a larger etched width. This was proven to be
inaccurate as the acid fracture conductivity may be small even
though the etching width is large due to rock weakening.

2. DATA GATHERING AND HANDLING

We relied on the experimental data in this research as the
published field data of acid fracture conductivity is rare. Also,
in such field operations, there is no standard in terms of
injection rate, injection time, and treatment volume based on
which the acid fracture conductivity is evaluated. Generally, the
field conditions are less controlled than the laboratory ones.
Thus, tracking the effect of changing one condition on the
resulting conductivity will be a challenge. An extensive
literature review was applied to gather published data on the
API acid fracture conductivity experiments.12,19,21,28−31 It is
worth mentioning that the data collected are consistent as they
are obtained from the same laboratory using the same
experimental procedure. Table 2 illustrates the physical
properties, meanings, and units of different features.

The main goal of the acid fracture experiment was to
measure conductivity at different formation closure stresses
while mimicking field environments (e.g., rock type, acid type,
injection rate, treatment volume). Different conditions
resembled the field conditions but were scaled down using
dimensionless numbers. Different conditions were tested in the
laboratory to understand their effect on conductivity and
estimate the optimum conditions at which the maximum
conductivity is obtained. This will help later in optimizing the
field treatment conditions. Treatment conditions (e.g., temper-
ature, injection time) along with rock types and their initial
surface conditions were tabulated. Then, conductivities at each
load stress and etching pattern were compiled to complete the
dataset, as illustrated in Table 3.32 Therefore, the data gathered
were consistent as the data points were generated from the
same modified API RP-61 conductivity cell using the same
experimental standard procedure.33

Failed experiments and outliers were excluded to obtain the
most appropriate data for creating the model. Table 4 includes
a statistical summary of the different numerical features. Notice
that the acid diffusion coefficient, as numerical input, was used
for the ANN model, while the categorical input was used for
the MLR model.
There were various types of predictors and features among

the collected data, both categorical and numerical. The ranges
of numerical values differed from one to another feature. For
example, stress ranged from 0 to 7500 psi, while temperature
from 100 to 275 F. The stress range was approximately 43
times larger than the temperature range. When further analyses

Table 2. Physical Meaning of Features Used in Conductivity
Prediction

feature symbol physical meaning and unit

rock type X1 rocks etched by different acids
acid type X2 acid systems used to etch rocks
rock surface X3 initial rock surface before acid etching
etching pattern X4 manner of rock surface behavior after acid etching
temperature X5 temperature of etching acid in F
injection rate X6 rate of pumping acid through API conductivity

cell in liters per minute
injection time X7 time for pumping acid through API conductivity

cell in minutes
acid
concentration

X8 concentration of etching acid pumped through
API conductivity cell as a percentage

stress X9 applied stress by loading frame in psi
conductivity Y resultant rock conductivity under stress in mD-ft
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were conducted (e.g., MLR), the attributed stress intrinsically
influenced the result significantly because of its larger
magnitude. However, this did not essentially mean that it is
more important as a feature. The predictors considered were
{X1, X2, ..., Xn}, where the superscript j is an index ranging from
1 to the total number of predictors n. Each predictor X
contained m datapoints, xi

j, where the subscript i is an index
ranging from 1 to the total number of points m. The objective
of the normalization was to alter these features in the dataset to
be in one common scale without changing the difference in the
value range. Therefore, the normalization of the numerical
features, prior to modeling, was accomplished by subtracting

their means and scaling them to unit variance, as shown in the
following equation:

μ
σ

=
−

z
x

i
j i

j j

j (1)

where zi
j is the z-score or normalized value of each data point,

μj is the mean value of each predictor X, and σj is the standard
deviation of the predictor.

3. RESULTS AND DISCUSSION
3.1. Classification of Etching Patterns. Rock surface,

rock type, and acid type were used as predictors for 80% of the
data (78 experiments) in order to train the model with fivefold

Table 3. Sample of Showing the Input Data Used for AI Training

X1 X2 X3 X4 X5 X6 X7 X8 X9 Y

chalk Gelled acid rough channeling 175 1 30 15 3000 90
chalk straight smooth turbulence 175 1 5 15 100 2778
dolomite gelled acid smooth Rough 130 0.5 20 15 500 127
dolomite gelled acid smooth Rough 130 0.5 20 15 1000 104
limestone gelled acid rough Rough 175 1 30 15 5000 72
limestone emulsified smooth Rough 200 1 15 15 1000 1597

Table 4. Description of the Dataset Used for AI Modeling

statistical parameters acid diffusion coefficient (cm2/s) temperature, °F exposure time, mins closure stress, psi fracture conductivity, mD-ft

(a) Dolomite
mean 9.0 × 10−6 146.67 259.09 3009.09 1127.78
standard error 2.0 × 10−7 2.85 11.22 195.78 120.03
median 1.0 × 10−5 130 300 3000 738
mode 1.0 × 10−5 130 150 1000 2341
standard deviation 2.02 × 10−6 28.39 111.66 1948.00 1194.24
sample variance 4.07 × 10−12 8.06 × 102 1.25 × 104 3.79 × 106 1.43 × 106

kurtosis 2.77 × 10−1 −1.13 −1.01 −0.66 0.59
skewness −1.51 × 10 0.23 0.55 0.49 1.18
range 5.00 × 10−6 100.00 300.00 7500.00 4422.00
minimum 5.0 × 10−6 100.00 150.00 0.00 46.00
maximum 1.0 × 10−5 200.00 450.00 7500.00 4468.00
(b) Chalk
mean 1.9 × 10−5 140.09 171.82 1688.18 1748.46
standard error 2.59 × 10−6 3.04 11.31 112.73 314.86
median 1.0 × 10−5 130.00 150.00 1750.00 165.50
mode 1.0 × 10−5 175.00 150.00 1000.00 72.00
standard deviation 2.7 × 10−5 31.8755 118.6269 1182.3419 3302.3062
sample variance 7.36 × 10−10 1.02 × 103 1.41 × 104 1.40 × 106 1.09 × 107

kurtosis 5.41 × 10 −1.7 1.0 −1.20 12.7
skewness 2.70 × 10 0.0 1.4 0.1 3.3
range 9.0 × 10−5 75.0 375.0 4000.0 20440.0
minimum 1.00 × 10−5 100.0 75.0 0.0 4.0
maximum 1.00 × 10−4 175.0 450.0 4000.0 20444.0
(c) Limestone
mean 2.49 × 10−5 174.468 387.596 2993.617 1985.868
standard error 2.40 × 10−6 1.595 19.340 110.640 224.458
median 1.00 × 10−5 175 300 3000 482
mode 1.00 × 10−5 200 300 3000 72
standard deviation 3.68 × 10−5 24.456 296.477 1696.074 3440.870
sample variance 1.35 × 10−9 5.98 × 102 8.79 × 104 2.88 × 106 1.18 × 107

kurtosis 4.53 × 10−1 −0.754 8.847 −0.921 6.382
skewness 1.55 × 10 −0.728 2.786 0.079 2.601
range 9.90 × 10−5 75.0 1605.0 6900.0 16823.0
minimum 1.00 × 10−6 125.0 75.0 100.0 15.0
maximum 1.00 × 10−4 200.0 1680.0 7000.0 16838.0
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cross-validation. For testing, the last 20% of the data (19
experiments) was used. The classifier had a test error of 0.0833
and an overall accuracy of 94.7%. Figure 1 summarizes all

precision and recall values. The overall accuracy of the classifier
is shown in the corner square to the right of the figure. The
rows represent the predicted class, while columns the actual
class. The diagonal squares indicate the observations that were
correctly classified. The off-diagonal squares are incorrectly
classified observations. The number of observations and their
percentages are shown in each square. The rightmost column
includes the percentages of all observations predicted
belonging to each class that was correctly or incorrectly
classified. This metric is called precision. The bottom row
includes the percentages of all observations belonging to each
class that was correctly or incorrectly classified. This metric is
called the true positive rate (i.e., recall).
Precision and recall become more important when the data

are skewed or unbalanced. For instance, dolomite generated a
roughness etching pattern in 90.6% of the experiments. There
was an unbalance in the etching pattern generated. If an
etching pattern classifier for dolomite only was set to always
output roughness, the overall accuracy would be higher than
90%. Any other etching pattern would be misclassified. Thus,

assessment of a classifier based on overall accuracy alone when
there is a severe class imbalance is inaccurate.

3.2. Regression for Conductivity Prediction (MLR).
3.2.1. Dolomite. Data often contain predictors that do not
have a major or any impact on the response. To obtain a non-
redundant or simpler model, these predictors should be
excluded from the model. Having a limited number of
predictors, yet holding nearly complete variance of the data,
is recommended.34 One approach to finding the most relevant
predictors for response is to repeatedly train the model while
adding predictors and observing loss. At a specific point,
adding more predictors will not improve the accuracy but
increase only the calculation time and memory consumption.
The rock surface, acid type, and etching pattern were

converted into dummy variables to make the entire dataset
homogeneous as numeric values. For example, a categorical
predictor that contained several categories equal to K was
converted into K − 1 predictors of zeros and ones.
Figure 2 shows the minimum number of predictors that are

enough to get the least loss in the multivariate linear model for
predicting the dolomite conductivity. Adding the etching
pattern and temperature considerably decreased the loss and
then remained almost constant after adding the rock surface
and acid type.
The features that resulted in the least loss in Figure 2 were

utilized to obtain the first dolomite model. The predictors
starting with “Stress” and ending with “RockSurface =
Roughness” were chosen. MATLAB software function “x2fx.”
was used to build the design matrix. One of the following four
models should be selected at the beginning: “linear,”
“interactions,” “quadratic,” or “pure quadratic.” The 10-
predictor matrix was transformed into a design matrix using
the “quadratic” model. Figure 3 shows the learning curve

Figure 1. Confusion matrix of the etching pattern classifier (i.e.,
channeling, roughness, turbulence, and uniform).

Figure 2. Minimum number of predictors to obtain the least loss for dolomite.

Figure 3. Learning curve for dolomite showing the training and
testing set error evolution.
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showing a high variance that cannot be resolved by
regularization or simplification of the model. This usually
means that more input data should be utilized. The actual and
fitted value correlation coefficient was 94.9%, and the
normalized MSE was around 0.03. This model contained
many parameters (52) which is not practical for implementa-
tion. To obtain a simpler model with reasonable performance,
other models were trained with different combinations of
predictors. Using the first four predictors, starting with “Stress”
and ending with “InjectionRate”, a simpler correlation was
obtained whose bias and weights are presented in Table 5.

Figure 4 shows a plot of predicted versus actual dolomite
conductivity values. The fitted values at high stresses were less
than the experimental values, as expected.

The fitted and actual value correlation coefficient was 93.1%,
and the normalized MSE was 0.05. Figure 5 shows the error
distribution indicating a slightly asymmetric behavior.
3.2.2. Chalk. The minimum number of predictors sufficient

to obtain the lowest loss in the multivariate linear model for
predicting the chalk conductivity is shown in Figure 6. Hence,
“Stress,” “InjectionTime,” “Temperature,” and “EtchingPattern
= Turbulence” were chosen as predictors. The chalk
conductivity model was obtained by training a polynomial
regression model of the selected predictors, their quadratic
values, and their interactions with one another.
Figure 7 shows the learning curve with a good model fit, as

the two curves plateau at a low error value.

The regularization parameter selected was 0.001 as it
resulted in the lowest cross-validation error.
The values predicted for chalk conductivity were then

plotted against the actual ones (see Figure 8).

The fitted and actual values of correlation coefficient were
90.6%. Chalk conductivity error distribution indicates asym-
metric behavior, as seen in Figure 9.
It is possible to train simpler models with fewer predictors

for dolomite and chalk as they often develop a roughness
etching pattern (see Table 6). Table 7 shows a simpler model

Table 5. Dolomite Detailed Conductivity Model Showing
Bias and Weights

parameter value

bias 0.7969
X6 0.1103
X7 0.5616
X8 −0.0107
X9 −0.2002
X6 × X7 0.3348
X6 × X8 −0.0325
X6 × X9 −0.0738
X7 × X8 −0.1305
X7 × X9 −0.0548
X8 × X9 0.0145
(X6)2 −0.1686
(X7)2 −0.6016
(X8)2 −0.0402
(X9)2 0.0309

Figure 4. Actual vs predicted values of dolomite conductivity
estimation.

Figure 5. Error distribution of dolomite conductivity predictions.

Figure 6. Lowest number of predictors to obtain the least loss for
chalk.

Figure 7. Learning curve for chalk showing the training and testing set
error evolution.

Figure 8. Actual vs predicted values of chalk conductivity estimation.
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for chalk conductivity with the same performance as the
previous model discussed above.

3.2.3. Limestone. Predicting limestone conductivity can be
challenging as acid/rock reaction generates all kinds of etching
patterns. Thus, to develop a reasonable conductivity model,
high conductivity values were evaluated first. A classifier was
created based on an ensemble classification using the treatment
and original surface conditions. The accuracy of the classifier
was around 93%, as shown in Figure 10. The outcome of this
classifier was then inserted into the polynomial regression
model as an additional predictor.
The high conductivity values were labeled “Conductivity =

High” and the normal values were labeled “Conductivity =
Normal”. Four data points from the test dataset were
misclassified by the confusion matrix. Error analysis was
carried out to examine why this misclassification occurred. The
channels could be thought of as open slots, the conductivity of
which depended on the channel width. Wider channels usually
have a higher conductivity as they are more open to flow. The
channel’s V-shaped angle impacts its sustainability under stress.
For example, if the V-shaped angle was acute, it would collapse
at higher stresses than would an obtusely angled channel.

The minimum number of predictors sufficient to obtain the
lowest loss in the multivariate linear model predicting the
conductivity of limestone is shown in Figure 11. Hence, the

predictor “Stress” was selected for the beginning and
“AcidType = Straight” for the end. The loss curve began to
increase as the number of predictors grew which could be an
indicator of data overfitting.
Multiple limestone conductivity models were generated by

training a polynomial regression model with different predictor
combinations where the simplest is tabulated in Table 8.
Figure 12 shows the learning curve showing a slightly high
variance as the training curve plateaus, whereas the test error
had a higher value. The regularization parameter that
minimizes the cross-validation error was around 0.003.

Figure 9. Error distribution of chalk conductivity predictions.

Table 6. Tendency of a Rock Type To Develop a Certain
Etching Pattern

channeling rough turbulence uniform total

dolomite 5 125 8 0 138
3.6% 90.6% 5.8% 0% 100%

chalk 6 100 11 0 117
5.1% 85.5% 9.4% 0% 100%

limestone 85 142 33 30 290
29.3% 49% 11.4% 10.3% 100%

Table 7. Detailed Conductivity Model for Chalk Showing
Bias and Weights

parameter value

bias 0.3769
X5 −0.1179
X7 0.2851
X9 −0.3391
X5 × X7 −0.0672
X5 × X9 −0.0867
X7 × X9 0.0232
(X5)2 −0.5476
(X7)2 −0.0567
(X9)2 0.1459

Figure 10. Confusion matrix of normal and high limestone
conductivities.

Figure 11. Lowest number of predictors to obtain the least loss for
limestone.

Table 8. Detailed Conductivity Model for Limestone
Showing Bias and Weights

parameter value

bias 0.2374
conductivity = normal −0.5451
X5 0.4974
X9 −0.8598
conductivity = normal × X5 −0.4680
conductivity = normal × X9 0.7245
X5 × X9 −0.1317
AcidType = viscoelastic −0.0700
AcidType = straight 0.1103
(X9)2 −0.0008

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c02123
ACS Omega XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02123?fig=fig11&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c02123?ref=pdf


Figure 13 shows the actual versus predicted values of
limestone conductivity. It is evident from the plot that the
extreme values could not be predicted by the model.

The fitted and actual values of correlation coefficient were
around 92%. The error distribution of limestone conductivity
was asymmetrical (see Figure 14) as high conductivity values

could not be predicted. The classifier and the conductivity
model were not trained to handle extremely high conductivity
values as they were 2 to 3 orders of magnitude higher than the
normal values. The overall error was around 0.686 due to the
occurrence of these points.
3.3. ANN Model Outcomes. Several numbers of experi-

ments were performed to measure the fracture conductivity of
dolomite, chalk, and limestone rocks. From these experiments,
several data points were collected. Out of the total datasets,
70% of them were used to train the model and remaining 30%
were used to test the model.
3.3.1. Dolomite. On a set of 70% of data for training, the

ANN model predicted the natural log of fracture conductivity
of dolomite rock with an R2 of 0.877 and a root mean square
error (RMSE) of 0.057, while testing of the ANN model
predicted the natural log of fracture conductivity of dolomite

rock with an R2 of 0.897 and an RMSE of 0.103. The
performance plots for the training and testing are shown in
Figures 15 and 16.

The proposed equation of fracture conductivity of the
dolomite rock is given by eq 2. The output of eq 2 will be in
mD-ft.

= × +Conductivity eDol
2.292 coductivity 6.116Doln (2)

where
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where σ = −
+ −( )x( ) 1L

2
1 e x2 , σo(x) = x, w1, w2, b1, and b2 are

the weights and biases of the fracture conductivity of dolomite
rock, given in Table 9. Dn is the normalized value of the
diffusion coefficient, Tn is the normalized value of the
temperature, Etn is the normalized value of the exposure
time, and σn is the normalized value of the closure stress. The
equations to find Dn, Tn, Etn, and σn for dolomite rock are
given in eqs 4−7.

Figure 12. Learning curve for limestone showing the training and
testing set error evolution.

Figure 13. Actual vs predicted values for limestone conductivity
estimation.

Figure 14. Error distribution of limestone conductivity predictions.

Figure 15. Measured and predicted values of fracture conductivity for
dolomite rock during training and testing with RMSE.

Figure 16. Training and testing cross-plot between experimentally
measured and predicted fracture conductivities for dolomite.
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where σ is the closure stress in psi.
3.3.2. Chalk. On a set of 70% of data for training, the ANN

model predicted the natural log of fracture conductivity of
chalk with an R2 of 0.914 and an RMSE of 0.077, while testing
of the ANN model predicted the natural log of fracture
conductivity of chalk with an R2 of 0.952 and an RMSE of
0.107. The performance plots for the training and testing are
shown in Figures 17 and 18.
The proposed equation of fracture conductivity of the chalk

is given by eq 8. The output of eq 8 will be in mD-ft.

= × +Conductivity echalk
4.2695 coductivity 5.6555chalkn (8)

where
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where σ = −
+ −( )x( ) 1L

2
1 e x2 , σo(x) = x, w1, w2, b1, and b2 are

the weights and biases of the fracture conductivity of dolomite
rock, given in Table 10. Dn is the normalized value of the
diffusion coefficient, Tn is the normalized value of the
temperature, Etn is the normalized value of the exposure
time, and σn is the normalized value of the closure stress. The
equations to find Dn, Tn, Etn, and σn for chalk are given in eqs
10−13.
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where D is the diffusion coefficient in cm2/s.
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where Et is the exposure time in min

Table 9. Weights and Biases of the Proposed Conductivity Model for Dolomite

hidden layer neurons
(Nh)

weights between input and hidden layers
(w1)

weights between hidden and output layers
(w2)

hidden layer bias
(b1)

output layer bias
(b2)

1 −0.541 −2.654 0.455 −1.765 2.032 3.084 −0.584
2 1.823 0.728 −0.308 2.064 1.200 −2.155
3 −0.744 0.071 −3.273 1.274 −0.049 1.224
4 0.396 3.026 −0.462 −2.078 0.460 −0.711
5 −0.227 −2.129 2.148 0.467 −1.336 0.444
6 0.565 0.450 −2.782 0.774 −0.914 −0.828
7 0.752 2.023 −1.729 0.545 −1.310 0.341
8 −1.731 0.041 0.084 1.785 0.540 −1.618
9 −2.468 1.091 2.787 0.817 −0.898 −2.944
10 0.633 −0.274 −2.087 −1.739 0.529 −2.856

Figure 17. Measured and predicted values of fracture conductivity for
chalk during training and testing with RMSE.

Figure 18. Training and testing cross-plot between experimentally
measured and predicted fracture conductivities for chalk.
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and where σ is the closure stress in psi.
3.3.3. Limestone. On a set of 70% of data for training, the

ANN model predicted the natural log of fracture conductivity
of limestone with an R2 of 0.85 and an RMSE of 0.049, while
testing of the ANN model predicted the natural log of fracture
conductivity of chalk with an R2 of 0.845 and an RMSE of
0.091. The performance plots for the training and testing are
shown in Figures 19 and 20.

The proposed equation of fracture conductivity of the
limestone rock is given by eq 14. The output of eq 14 will be in
mD-ft

= × +conductivity eLs
3.515 coductivity 6.215Lsn (14)
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where σ = −
+ −( )x( ) 1L

2
1 e x2 , σo(x) = x, w1, w2, b1, and b2 are

the weights and biases of the fracture conductivity of dolomite
rock, given in Table 11. Dn is the normalized value of the

diffusion coefficient, Tn is the normalized value of the
temperature, Etn is the normalized value of the exposure
time, and σn is the normalized value of the closure stress. The
equations to find Dn, Tn, Etn, and σn for chalk are given in eqs
16−19.
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where D is the diffusion coefficient in cm2/s.
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where T is the temperature in F
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where Et is the exposure time in min

i
k
jjj

y
{
zzzσ σ= × −

−
−2

100
7000 100

1n (19)

and where σ is the closure stress in psi.

4. METHODS
Figure 21 shows the two goals for this research where the first
was to classify the etching patterns based on the rock type and
treatment conditions. A multiclass algorithm was required to
label the different classes, depending on different conditions.
The second objective was predicting the conductivity of the
different rock types, using their most important features. MLR
was a simple and robust approach to obtaining a predictive
model. Another approach was also utilizing the ANN model to
train the data and predict the conductivity.
The workflow to develop new regression models for the

prediction of the fracture conductivity of the different rocks is
given in Figure 22. After gathering extensive laboratory
experimental data, the dataset was collected, analyzed, and
cleaned from misleading values such as negative or extreme
values. Then, various machine learning algorithms were applied
for both classification and regression models.

4.1. Classification of Etching Patterns. Ensemble
templates can be used to train multiclass error-correcting
output code models. The template used in this study has three
arguments: method, number of learners, and learner. The
specified approach was “GentleBoost,” the number of learners
was 100, and the learner was a decision tree. As a classifier, the
decision tree splits data based on a certain condition (node)
into two groups (branches) in binary classification problems.35

Table 10. Weights and Biases of the Proposed Conductivity Model for Chalk

hidden layer neurons
(Nh)

weights between input and hidden layers
(w1)

weights between hidden and output layers
(w2)

hidden layer bias
(b1)

output layer bias
(b2)

1 0.057 2.091 −0.632 −2.305 −0.308 1.775 −0.831
2 1.913 1.082 2.088 0.543 0.103 −0.914
3 −2.431 3.276 −0.018 −1.401 0.566 −0.710
4 1.059 1.453 −0.119 −2.460 −0.193 −0.236
5 1.463 −0.473 2.206 1.809 −0.468 −0.584
6 0.091 1.550 −1.001 −0.313 0.375 1.378
7 −2.274 1.140 −0.279 −1.633 −0.357 −0.415
8 0.866 0.223 −1.150 −3.090 0.329 1.476
9 −2.393 0.164 −2.246 3.159 −0.204 −2.581
10 −0.223 −1.150 2.175 −2.182 0.336 1.987

Figure 19. Measured and predicted values of fracture conductivity for
limestone rock during training and testing with RMSE.
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For each variable, there is a splitting value (threshold) that
yields the best split with a minimum error. After finding the
first variable splitting value, the rest of the splitting values
corresponding to other variables should be identified in a
sequential process. The splitting continues for each branch
until reaching a single data point (leaf). Multiclassification is
similar to the binary classification, but with a minor
modification. One class is regarded as positive and the rest
are negative. The decision trees are weak learners and unstable,
that is, the whole tree structure and the results may change a
lot by changing the initial training data set. Ensemble learning
methods such as boosting can mitigate this effect.
Ensemble learning is an aggregation of multiple options that

decreases the possibility of choosing a poor model. It starts
with giving more weight (boost) to the misclassification from
the first tree. The next tree is constructed by the new boosted
weights, and the process is repeated for the predefined number
of learners.36

4.2. MLR. The importance of regression as used in the
present study is to reduce the cost function J(θ⃗)through
gradient descent. The cost function measures how wrong the
model is when estimating the responses from predictors. A
gradient descent minimizes the cost function by finding the

weights, θj, that make θ ⃗
θ
∂

∂ J( )
j

equal to zero. The hypothesis hθ

differentiates between linear and nonlinear regressions.
Directly using the feature values means a linear hypothesis,
whereas introducing a logarithm or power to the feature values
makes the hypothesis nonlinear. The hypothesis function is
sensitive to slight changes in the coefficients. The coefficients’
values change by a significant amount as the training data
change. Thus, regularized linear regression was appropriate for
this problem. Regularization is used to drop features that do
not contribute to a good prediction. The regularization term
has different forms, and the regression is named based on
whether it is ridge, lasso, or elastic net. Fitting a linear

Figure 20. Training and testing cross-plot between experimentally measured and predicted fracture conductivities for limestone.

Table 11. Weights and Biases of the Proposed Conductivity Model for Limestone

hidden layer neurons
(Nh)

weights between input and hidden layers
(w1)

weights between hidden and output layers
(w2)

hidden layer bias
(b1)

output layer bias
(b2)

1 5.001 1.241 −9.074 −0.422 −0.851 −7.506 5.203
2 0.521 −5.155 1.886 −2.537 −2.443 2.002
3 −1.235 0.932 −3.035 1.092 −3.206 1.261
4 −1.360 0.222 1.658 1.034 −1.760 −0.170
5 −0.687 5.472 −1.242 2.609 −2.516 −1.738
6 0.972 0.067 0.746 0.894 −1.817 0.853
7 1.012 0.938 −0.481 0.593 2.745 −0.512
8 2.002 −0.357 −3.777 0.118 −1.583 0.365
9 −5.494 −2.375 0.527 0.870 1.636 −3.967
10 −0.815 −4.526 −2.476 −2.126 0.799 −2.403
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regression model to data can result in coefficients with large
variances. Regularization reduces the variance of coefficients,
yielding models with smaller prediction errors. Here, ridge
regression was used, and the cost function is defined as in eq
20

∑ ∑θ λ θ⃗ = − +θ
= =

J
m

h x y( )
1

2
( ( ) )

i

m
i i

j

n

j
1

( ) ( ) 2

1

2

(20)

where J(θ⃗) is the cost function, m is the number of data points,
y(i) is the actual response at the datapoint i, λ is the
regularization parameter, n is the number of predictors, θj is
the weight multiplied by the feature j, and hθ(x

(i)) is the
hypothesis. The hypothesis consisted of a combination of Xs
multiplied by θs, depending on the design matrix.
4.3. ANN Model. An ANN technique was used to predict

fracture conductivities of the three types of carbonate rocks.
The ANN models were trained with 1 hidden layer and 10
neurons. Each model was developed with four input
parameters, namely, diffusion coefficient (D), temperature
(T), exposure time (Et), and closure stress (σ). Exposure time
is the product of acid concentration in wt % and injection time
in minutes. Exposure time (Et) is given by eq 21.

= ×Et acid concentration injection time (21)

Tangential sigmoidal “Tansig” was used as an activation
function between the input layer and the hidden layer, and
pure linear was used as an activation function between the
hidden and output layers for each model. The rate of learning
was constant at 0.15. Levenberg−Marquardt (LM) was used as
an ANN learning algorithm. The general topography of the
proposed ANN models is given in Table 12.

The models were evaluated based on the RMSE and
maximum coefficient of determination (R2). The definitions of
RMSE and R2 are given in eqs 22 and 23, respectively.
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where Ymeasured is the measured value of tor and Ypredicted is the
estimated value from the model. k is the total number of data
points.
To avoid the model to get stuck on a local minimum, a total

of 10,000 realizations were made to arrive at the most
optimum ANN model. ANN is a stochastic algorithm which
generates different results in each run. In order to fix this issue,
the seeds were generated randomly. All the results were unique
for each seed. To get the most accurate and generalized robust
model, a multiobjective function was designed. In this study, a
total of 10,000 realizations were made and, in every realization,
the seed numbers were changed and the multiobjective
function was evaluated. The seed number corresponding to
the maximum value of the objective function was taken as the
best model. The definition of the designed multiobjective
function is expressed by eq 24

= [ × ×

+ ×

+ × ×

+ × ]

−

−

R

R

objective function max 0.5 (0.25

0.25 )

0.5 (0.25 RMSE

0.25 RMSE )

training
2

testing
2

training
1

testing
1

(24)

where Rtraining
2 is the R2 obtained during training on 70% of the

dataset, Rtesting
2 is the R2 obtained during testing on 30% of the

dataset, RMSEtraining − 1 is the inverse of RMSE obtained
during training on 70% of the dataset, and RMSEtesting − 1 is
the inverse of RMSE obtained during testing on 30% of the
dataset. The inverse of RMSE was taken to move the objective
function in the same direction, as our objective was to get the
maximum R2 and minimum RMSE.

5. CONCLUSIONS
Different acid fracture stimulation conditions result in different
etching patterns. Considering field operations, these parame-
ters can be adjusted to get favorable etching patterns.
Conventional machine learning algorithms can be a robust
and quick way to get an accurate estimation of conductivity.
Also, predicting the etching pattern development on the rock
surface with different stimulation conditions can improve the

Figure 21. Flow diagram showing the objectives of the proposed
work.

Figure 22. Workflow diagram of the present study.

Table 12. Topography of Proposed ANN Models

parameters values

number of input parameters 4
hidden layer 1
number of neurons in a hidden layer 10
learning algorithm LM
rate of learning, α 0.15
transfer function of a hidden layer tangential sigmoidal
transfer function of an outer layer linear
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design. The etching pattern that results from acid fracturing
has a more significant impact on limestone acid fracture
conductivity than on that of chalk and dolomite. Both
dolomite and chalk developed a roughness etching pattern in
more than 85 and 90% of the acid etching experiments,
respectively. Limestone developed a roughness etching pattern
in less than 50% and a channeling etching pattern in 30% of
the acid etching experiments. Limestone’s extremely high
conductivity channels could not be fit by the model and caused
increased errors. Most errors in acid fracture conductivity
estimation happen at low stresses when the fracture behaves
like an open slot, or at high stresses when the rock fails
unexpectedly under closure stress.
The ANN models proposed in this study are used to predict

the fracture conductivity of dolomite, chalk, and limestone
rock. The developed equations using ANN do not require any
AI software for execution. The models were tested within a
range of values on which the models were trained. The range
of tested values are quite reasonable in the oil and gas field. All
AI models are data driven; they can be used within the range of
input parameters on which they are trained. Using them
beyond their range will result in unreliable results. Users of the
proposed correlations are recommended to apply these models
within the range of dataset given in Table 4. The developed
correlations are not recommended to use beyond the range of
input parameters on which they are developed.
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